AN ALLYLIC NUCLEOPHILIC SUBSTITUTION REACTION OF 1α -HYDROXYVITAMIN D DERIVATIVES

M.J. Calverley

Leo Pharmaceutical Products, DK-2750 Ballerup, Denmark

Abstract: The first transformation of the $5,6-\underline{\text{trans}}-\underline{\text{vitamin}}$ D conjugated triene system into that of isovitamin D occurring under nucleophilic conditions is observed in the reaction of $\underline{5}$ with $\underline{n}-\underline{\text{butyl}}-\underline{\text{lithium}}$ to give $\underline{6}$.

There is considerable chemical and biological interest¹ in the transformations of (i) vitamin D (<u>1</u>) (5<u>Z</u>) into 5,6-<u>trans</u>-vitamin D (<u>2</u>) (5<u>E</u>) and (ii) <u>1</u> and <u>2</u> into isovitamin D (<u>3</u>) (5<u>E</u>). These reactions all involve either carbocations² or radicals³ as intermediates, and the reactions of <u>1</u> are associated with stereomutation of the 5,6-double bond. I now report on a related transformation (<u>5</u> \rightarrow <u>6</u>) which involves a carbanionic intermediate produced by <u>n</u>-butyl-lithium. The process may be considered as a novel S_N²' reaction in which a trialkylsilyloxide anion is substituted by 1-butyl anion.

Although the synthesis of the important $l\alpha$ -hydroxylated metabolites of vitamin D has received much attention,¹ very little chemistry relating to further manipulation of the $l\alpha$ -hydroxy group in this type of compound has been described. Reaction under nitrogen of the bis-<u>tert</u>-butyldimethylsilyl (TBDMS) ether $(5)^4$ (m.p. 112-113 °C)⁵ of $l\alpha$ -hydroxy-5,6-<u>trans</u>-vitamin D₂ $(4)^6$ with 1.2 molar equiv. <u>n</u>-butyl-lithium in tetrahydrofuran (THF) (-60° \cdot 20°C during 30 min) gave the oily product (<u>6</u>) (yield 75%),⁷ which was converted to the alcohol (<u>7</u>) (m.p. 107-109 °C) by desilylation (Bu₄NF/THF). The molecular formulae of <u>6</u> (C₃₈H₆₆OSi) and <u>7</u> (C₃₂H₅₂O) demonstrated the substitution of one <u>tert</u>-butyldimethylsilyloxy group by a butyl

group in the transformation $5 \cdot 6$, and the regiochemistry clearly followed from mechanistic considerations and the changes which are observed in the UV- and NMR-spectra.⁸ This reaction thus constitutes the first example of the conversion of the 5,6-<u>trans</u>-vitamin D triene system into that of the isovitamin under nucleophilic conditions and probably involves addition of butyl anion at C-

19 to give a pentadienyl carbanion, followed by expulsion of the silyloxide.⁹ Methyl-lithium reacts similarly, and an exploration of the scope of the reaction as regards other types of nucleophiles (including "hydride") is underway.¹⁰

REFERENCES AND NOTES

- 1. For a review, see P.A. Bell, in "Vitamin D", ed. D.E.M. Lawson, Academic Press, London, 1978, ch. 1.
- 2. For example, T. Kobayashi and A. Adachi, J. Nutr. Sci. Vitaminol., 1973, 19, 311.
- 3. For example, A.G.M. Barrett, D.H.R. Barton, G. Johnson and S. Nagubandi, <u>Synthesis</u>, 1978, 741.
- All new compounds gave satisfactory microanalytical and UV-, IR-, NMR- and mass spectroscopic data.
- 5. The corresponding derivative in the D₃ series has m.p. 96-97.5 °C and reacts analogously in the transformations described here.
- (a) H.E. Paaren, H.F. DeLuca and H.K. Schnoes, <u>J. Org. Chem</u>., 1980, <u>45</u>, 3253.
 (b) R.H. Hesse, U.K. P. Appl. 2 108 506A / 1982.
- 7. In addition, a 10% yield of an oily hydrocarbon was isolated. The NMR-spectrum shows a phenylene group, a new non-conjugated olefinic proton, and other features entirely consistent with the assignment of structure <u>A</u>. [δ inter alia 3.43 (2H,d,<u>J</u> 7 Hz,6-H₂), 5.04 (1H,t,<u>J</u> 7 Hz,7-H) and 7.14 (4H,s,ArH).] The intermediacy of <u>6</u> in the formation of <u>A</u> was demonstrated in a separate experiment in which isolated <u>6</u> was treated with <u>n</u>-butyl-lithium.
- 8. <u>Cf.</u> spectra of <u>e.g.</u> <u>7</u> with those recorded for <u>4</u> (Ref. 6(a)) and isovitamin D₃ itself (W. Reischl and E. Zbiral, <u>Helv. Chim. Acta</u>, 1979, <u>62</u>, 1763): <u>7</u>; λ_{max} (EtOH) 301, 288 and 278 nm (e 32200, 44100 and 35200); δ (100 MHz, CDCl₃) 0.57 (3H,s,18-H₃), 0.75-1.05, [15H,m, including 1.02 (d,<u>J</u> 6.6 Hz,21-H₃), remaining Me-groups], 3.97 (lH, br m,3-H), 5.2 (2H,m,22-H,23-H), 5.49 (1H,m,1-H), 5.94 and 6.50 (each 1H,d,<u>J</u> 11 Hz,ABq,7-H and 6-H).
- 9. In principle, the reaction of the 5<u>Z</u> isomer of <u>5</u> with <u>n</u>-butyl-lithium should give rise to the 5,6-<u>cis</u>-isovitamin D₂ (5<u>Z</u>) derivative corresponding to <u>6</u>. However, a preliminary experiment with la-hydroxyvitamin D₂ bis-TBDMS ether (<u>8</u>) failed to give a clean reaction, and indeed when a 1:1 mixture of <u>8</u> and <u>5</u> (as an internal control) was treated with butyl-lithium, most of the <u>cis</u>-vitamin derivative (<u>8</u>) was recovered scavenged of <u>5</u>, and the product was <u>6</u> contaminated with only a minor amount of its 5<u>Z</u> isomer.
- 10. I am grateful to Prof. W.D. Ollis for his assistance during the preparation of this manuscript.

(Received in UK 7 February 1986)